Sebenarnyadiantara dua jenis bilangan ini tidak terlalu terdapat perbedaan, dimana di dalamnya sudah umum diperuntukan untuk perhitungan matematika. Namun perbedaan yang paling mendasar adalah, apabila bilangan asli dimulai dari angka 1 keatas, sedangkan bilangan cacah dimulai dari angka 0 keatas. BACA JUGA: PENGERTIAN BANGUN DATAR ADALAH
BerandaDiketahui S = { bilangan Cacah kurang dari 15 } ...PertanyaanDiketahui S = { bilangan Cacah kurang dari 15 } A = { bilangan asli genap kurang dari 11 } B = { bilangan asli ganjil kurang dari 8 } C = { bilangan asli lebih dari 4 dan kurang dari 7 } a. Tentukan anggota dari himpunan S , A , B , dan CDiketahui a. Tentukan anggota dari himpunan , , , dan ... ... ARMahasiswa/Alumni Universitas Negeri MalangPembahasanHimpunan bilangan cacah adalah sedangkan himpunan bilangan asli adalah . Selanjutnya himpunan bilangan asli genap adalah dan himpunan bilangan asli ganjil adalah . Sehingga .Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!KSKurnia Sry Jawaban tidak sesuaiΓΒ©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
A={bilangan asli kurang dari 20} B = {bilangan asli genap kurang dari 15} C ={bilangan asli ganjil kurang dari 10} D ={bilangan asli lebih dari 7 dan kurang dari 15}c. Gambarlah diagram Venn-nya Oleh Admin Diposting pada Juni 22, 2022
Bilangan asli adalah bilangan yang dimulai dari 1, 2, 3, 4, dan seterusnya. Bilangan asli termasuk dalam bilangan cacah. Bilangan cacah terdiri dari bilangan asli ditambah dengan 0. Bilangan cacah merupakan bilangan yang digunakan untuk pencacahan, yaitu proses menentukan banyak benda. Bilangan cacah yaitu 0, 1, 2, 3, 4, dan seterusnya. Pengertian Bilangan Asli Bilangan asli adalah bilangan yang terdiri dari 1, 2, 3, 4, 5, dan seterusnya. Bilangan asli merupakan salah satu konsep matematika yang paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera juga bisa menangkapnya. Wajar apabila bilangan asli adalah jenis pertama dari bilangan yang digunakan untuk membilang, menghitung, dsb. Setiap bilangan, misalnya bilangan 1, adalah konsep abstrak yang tak bisa tertangkap oleh indra manusia, tetapi bersifat universal berlaku umum. Contoh Bilangan Asli Contoh bilangan asli ada banyak sekali dan bahkan tak terhingga. Misalnya 10 bilangan asli pertama yaitu 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 10. Bilangan asli kurang dari 15 yaitu 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, dan 14. Bilangan asli kurang dari 5 yaitu 1, 2, 3, dan 4. Bilangan asli kelipatan 3 yaitu 3, 6, 9, 12, 15, 18, 21, dan seterusnya ditambah-tambah 3. Himpunan Bilangan Asli Bilangan asli disebut sebagai himpunan bilangan karena terdefinisi dengan jelas. Himpunan bilangan asli adalah himpunan yang dilambangkan dengan huruf N dengan anggotanya sebagai berikut. $$\displaystyle \mathbb{N} = \{1,2,3,...\}$$ Huruf N ini berasal dari kata bahasa Inggris yaitu "Natural" untuk menyebut bilangan asli dalam bahasa Inggris "natural number". Adapun tanda titik tiga tersebut bermakna "dan seterusnya". Terdapat dua kesepakatan mengenai himpunan bilangan asli. Yaitu apakah 0 juga termasuk himpunan bilangan asli ataukah tidak? Yang pertama definisi menurut matematikawan tradisional, yaitu himpunan bilangan bulat positif yang bukan nol yaitu {1, 2, 3, 4, ...}. Sedangkan yang kedua definisi oleh logikawan dan ilmuwan komputer, adalah himpunan nol dan bilangan bulat positif yaitu {0, 1, 2, 3, ...}. Jadi, menurut studi ilmu komputer, 0 dimasukkan kedalam himpunan bilangan asli natural number. Tapi, karena yang kita bahas di sini adalah definisi bilangan asli dalam matematika maka bilangan asli adalah bilangan yang dimulai dari 1, 2, 3, 4, dan seterusnya. Contoh Himpunan Bilangan Asli Agar kamu bisa lebih mengerti tentang bilangan asli, berikut ini diberikan contoh soal himpunan bilangan asli dan jawabannya. 1. Tentukan himpunan bilangan asli kurang dari 8 Jawab {1, 2, 3, 4, 5, 6, 7} 2. Tentukan himpunan bilangan asli yang kurang dari 6 Jawab {1, 2, 3, 4, 5} 3. Tentukan himpunan bilangan asli yang kurang dari 4 Jawab {1, 2, 3} 4. Tentukan himpunan bilangan asli antara 3 dan 10 Jawab {4, 5, 6, 7, 8, 9} 5. Tentukan himpunan bilangan asli lebih dari 10 Jawab {11, 12, 13, 14, 15, 16, 17, ...} Bilangan Asli Dimulai dari Bilangan Satu Bilangan asli memiliki asal dari kata-kata yang digunakan untuk menghitung benda-benda, dimulai dari bilangan satu bukan 0. Kemajuan besar pertama adalah penggunaan sistem bilangan untuk melambangkan angka-angka. Sebagai contoh, orang-orang Babylonia mengembangkan sistem berbasis posisi untuk angka 1 dan 10. Orang Mesir kuno memiliki sistem bilangan dengan hieroglif berbeda untuk 1, 10, dan semua pangkat 10 sampai pada satu juta. Sebuah ukuran batu dari Karnak, tertanggal sekitar 1500 SM dan sekarang berada di Louvre, Paris, melambangkan 276 sebagai 2 ratusan, 7 puluhan dan 6 satuan; hal yang sama dilakukan untuk angka 4622. Kemajuan besar lainnya adalah pengembangan gagasan angka nol sebagai bilangan dengan lambangnya tersendiri yaitu 0. Nol telah digunakan dalam notasi posisi sedini 700 SM oleh orang-orang Babylon, namun mereka melepaskan bila menjadi lambang terakhir pada bilangan tersebut. Konsep nol pada masa modern berasal dari matematikawan India, Brahmagupta. Pada abad ke-19 dikembangkan definisi bilangan asli menggunakan teori himpunan. Dengan definisi ini, dirasakan lebih mudah memasukkan nol berkorespondensi dengan himpunan kosong sebagai bilangan asli, dan sekarang menjadi konvensi dalam bidang teori himpunan, logika dan ilmu komputer. Matematikawan lain, seperti dalam bidang teori bilangan, bertahan pada tradisi lama dan tetap menjadikan 1 sebagai bilangan asli pertama. Angka Bilangan Asli Simbol N kapital dicetak dua kali, digunakan untuk menunjukkan himpunan semua bilangan asli. Para ahli matematika menggunakan $\displaystyle \mathbb{N}$ atau $\displaystyle \mathbb{N}$ untuk menuliskan himpunan seluruh bilangan asli. Adapun angka lambang bilaangan dari bilangan asli adalah Satu dilambangkan dengan 1 Dua dilambangkan dengan 2 Tiga dilambangkan dengan 3 dan seterusnya. Bilangan asli yang hanya terdiri dari satu angka disebut bilangan satuan. Contoh 9 bilangan asli pertama. Bilangan asli yang terdiri dari dua angka disebut bilangan puluhan. Contoh 23 dibaca "dua puluh tiga". Bilangan asli yang terdiri dari tiga angka disebut bilangan ratusan. Contoh 143 dibaca "seratus empat puluh tiga". Bilangan asli yang terdiri dari empat angka disebut bilangan ribuan. Contoh 4563 dibaca "empat ribu lima ratus enam puluh tiga". Urutan Bilangan Asli Urutan bilangan asli menyatakan sederetan bilangan asli yang disusun dari bilangan terkecil ke yang terbesar atau sebaliknya. Menyatakan urutan bilangan asli dilakukan dengan cara menentukan manakah yang lebih besar atau lebih kecil dari bilangan asli yang diberikan. Jika m dan n bilangan asli, dimana m lebih besar dari n, maka ditulis $m > n$ Jika m lebih kecil dari n, maka ditulis $m < n$ Bilangan asli yang lebih besar akan diletakkan pada bagian kanan daripada bilangan yang lebih kecil. Khususnya jika bilangan asli tersebut digambarkan pada garis bilangan. Contoh urutan bilangan asli 3, 6, 9, 7 dari yang terkecil adalah 3, 6, 7, 9. Himpunan Bilangan Asli Adalah Himpunan Tak Hingga Bilangan asli dimulai dari 1, 2, 3, dan seterusnya. Bilangan asli merupakan himpunan yang tak hingga. Tidak ada akhir dari bilangan asli. Jika kamu bisa menyebubkan suatu bilangan asli M yang sangat besar, maka ada M+1 yang lebih besar. Misalnya M= maka ada yang lebih besar lagi yaitu M+1= Bilangan Asli dan Bilangan Cacah Bilangan cacah berbeda dengan bilangan asli. Bilangan cacah adalah himpunan yang terdiri dari bilangan asli dan nol Bilangan cacah yaitu 0, 1, 2, 3, 4, dan seterusnya. Jika dinyatakan dalam notasi pembentuk himpunan yaitu Bilangan Cacah = {0, 1, 2, 3, 4, ...} Jadi, bilangan cacah merupakan bilangan asli ditambah dengan 0. Letak perbedaan bilangan asli dan bilangan cacah adalah keanggotaan bilangan 0 tersebut yang tidak ada pada bilangan asli. Sebagai contoh, bilangan cacah yang lebih dari 3 dan kurang dari 10 adalah 4, 5, 6, 7, 8, dan 9. Ini sama halnya mencari bilangan asli lebih dari 3 dan kurang dari 10. Bilangan Asli Genap Pengertian dari bilangan asli genap adalah bilangan asli yang dapat dibagi 2. Contoh bilangan asli genap kurang dari 15 adalah 2, 4, 6, 8, 10, 12, dan 14. Bilangan asli genap antara 1 dan 5 yaitu 2 dan 4. Bilangan asli genap adalah himpunan bilangan {2, 4, 6, 8, 10, ...}. Bilangan Asli Ganjil Pengertian dari bilangan asli ganjil adalah bilangan asli yang tidak dapat dibagi 2. Contoh bilangan asli ganjil kurang dari 15 adalah 1, 3, 5, 7, 9, 11, dan 13. Bilangan asli ganjil antara 1 dan 5 yaitu 3. Bilangan asli ganjil adalah himpunan bilangan {1, 3, 5, 7, 9, ...}. Bilangan Asli Kuadrat Bilangan asli kuadrat adalah bilangan yang merupakan hasil dari bilangan yang dipangkatkan 2. Bilangan asli kuadrat adalah sebagai berikut. $1 = 1^2$ $4 = 2^2$ $9 = 3^3$ $16 = 4^4$ $25 = 5^2$ $36 = 6^2$ dan seterusnya untuk $49=7^2$, $64=8^2$, ... Soal Latihan Tentukan bilangan asli yang kurang dari 10 bilangan asli kurang dari 6 bilangan asli kurang dari 7 bilangan asli antara 3 dan 7 himpunan bilangan asli antara 0 dan 7 adalah himpunan 6 bilangan asli yang pertama bilangan asli antara 3 dan 8 bilangan asli yang kurang dari 7 bilangan asli genap antara 1 dan 11 bilangan asli yang kurang dari 20 bilangan asli kelipatan 2 bilangan asli maksimal 6 kuadrat 5 bilangan cacah pertama contoh bilangan komposit adalah bilangan asli antara 1 dan 10 kumpulan bilangan asli antara 4 dan 12 0 adalah bilangan asli atau bukan? himpunan bilangan cacah yang lebih dari 100 bilangan asli antara 2 dan 8 jelaskan pengertian bilangan asli bilangan asli atau bulat positif dapat terbentuk dari bilanganHasilpenelitian menunjukkan bahwa melalui problem solving dengan benda konkret dapat meningkatkan kemampuan penjumlahan pada anak usia kelompok B di TK PKK 74 PAJANGAN. Hasil siklus I, rerata kemampuan penjumlahan 11-15 (64,01) meningkat menjadi (83,33). Pada penjumlahan 16-20 (51,13) meningkat menjadi (85,60). BILANGAN ASLI, BILANGAN CACAH, DAN BILANGAN BULAT RESUME Sebagai Pemenuhan Tugas Mata Kuliah Pendidikan Matematika yang Diampu oleh Ibu Dra. Titik Sugiarti , dan Bapak Fajar Surya Hutama, Oleh Kelompok 1 Siti Humaira 150210204010 Nurliana Mawaddah 150210204015 Tika Triyana 150210204030 N. Lailatul Nadhifatul Uyun 150210204040 Kelas B PROGRAM STUDI PENDIDIKAN GURU SEKOLAH DASAR JURUSAN ILMU PENDIDIKAN FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER 2016 BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan suatu ilmu yang berhubungan dengan penelaahan bentuk-bentuk atau struktur-struktur yang abstrak dan hubungan-hubungannya diantara hal-hal itu. Semakin berkembangnya zaman, teknologi semakin canggih dan pengguna teknologi diharuskan memiliki kemampuan untuk memanfaatkan teknologi tersebut dengan sebaik mungkin. Kemajuan pesat di bidang teknologi informasi dan komunikasi dewasa ini pun dilandasai oleh perkembangan matematika. Pembelajaran matematika di sekolah dasar SD merupakan dasar bagi penerapan konsep matematika pada jenjang berikutnya. Konsekuensinya dalam pelaksanaan pembelajaran matematika di SD harus mampu menata dan meletakkan dasar penalaran siswa yang dapat membantu mamperjelas menyelesaikan permasalahan dalam kehidupan sehari-hari dan kemampuan berkomunikasi dengan bilangan dan simbol-simbol, serta lebih mengembangkan sikap logis, kritis, cermat, disiplin, terbuka, optimis, dan menghargai Matematika. Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Bilangan juga merupakan suatu ide yang bersifat abstrak yang akan memberikan keterangan mengenai banyaknya suatu kumpulan benda. Simbol ataupun lambang yang digunakan untuk mewakili bilangan itu disebut angka atau lambang bilangan. Dalam penggunaan sehari-hari, angka, bilangan dan nomor seringkali disamakan, secara definisi, angka, bilangan dan nomor merupakan tiga entitas yang berbeda. Angka adalah suatu tanda atau lambang yang digunakan untuk melambangkan bilangan, sedangkan nomor biasanya menunjuk pada satu atau lebih angka yang melambangkan sebuah bilangan bulat dalam suatu barisan bilangan-bilangan bulat yang berurutan B. Tujuan Tujuan dari penyusunan materi ini adalah untuk memberi pengetahuan kepada pembaca mengenai bilangan asli, bilangan cacah, dan bilangan bulat beseta sifat dan operasinya. BAB II PEMBAHASAN A. Bilangan Asli A 1. Pengertian Bilangan Asli Bilangan asli A counting number atau natural number merupakan bilangan yang dimulai dari angka 1 dan bertambah 1. Pada garis deret ukur bilangan matematika yang dimulai dari angka 1 bertambah 1 ke arah kanan. Contoh bilangan asli adalah 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 2. Operasi Bilangan Asli a. Operasi Penjumlahan Bilangan Asli Penjumlahan adalah menggabungkan sekelompok bilangan atau lebih menjadi suatu bilangan yang merupakan jumlah. Contoh di bawah adalah penjumlahan antara 1 buah bola ditambah dengan 1 buah bola yang menghasilkan 2 buah bola Apabila dinotasikan dengan angka menjadi 1 + 1 = 2 Penjumlahan juga dapat dilakukan dengan bertukar tempat. Pertukaran posisi dari angka yang dijumlahkan akan menghasilkan jumlah yang sama. Maka, 3 + 2 = 5 Demikian pula denga pola berikut ini Maka, 2 + 3 = 5 dan berlaku sifat komutatif pada penjumlahan. Contoh lain 1. 2 + 4 = 6 dan 4 + 2 = 6 2. 12 + 6 = 18 dan 6 + 12 = 18 3. 9 + 95 = 104 dan 95 + 9 = 104 b. Operasi Pengurangan Bilangan Asli Operasi perkurangan dinyatakan dengan tanda minus dalam notasi infix, dengan bentuk rumus c β b = a Dalam pengurangan, bilangan yang dikurangi disebut minuend, bilangan pengurang disebut subtrahend dan jawabannya disebut reminder. Maka c adalah minuend, b adalah subtrahend, dan a adalah reminder. Contoh 1 5 β 3 = 2 2 15 - 7 = 8 3 25 - 11 = 14 4 76 β 6 = 10 c. Operasi Perkalian Bilangan Asli Perkalian adalah operasi matematika penskalaan satu bilangan dengan bilangan lain. Operasi ini adalah salah satu dari empat operasi dasar di dalam aritmetika dasar yang lainnya adalah penjumlahan, pengurangan, pembagian. Perkalian terdefinisi untuk seluruh bilangan di dalam suku-suku perjumlahan yang diulang-ulang misalnya, 3 dikali 4 seringkali dibaca "3 kali 4" dapat dihitung dengan menjumlahkan 3 salinan dari 4 bersama-sama 3 x 4 = 4 + 4 + 4 = 12 Contoh lain 1 5 x 3 = 3 + 3 + 3 + 3 + 3 = 15 2 7 x 5 = 5 + 5 + 5 + 5 + 5 + 5 + 5 = 35 3 4 x 11 = 11 + 11 + 11 + 11 = 44 d. Operasi Pembagian Bilangan Asli Pembagian adalah konsep matematika utama yang seharusnya dipelajari oleh anak-anak setelah mereka mempelajari operasi penambahan, pengurangan dan perkalian. Pembagian adalah pengurangan berulang. Contohnya 12 4 artinya β12 β 4 β 4 - 4 = 0β maka hasilnya 12 4 = 3. Dalam tahap ini, diperkenalkan terlebih dahulu konsep Pembagian sebagai Pengurangan Beruntun dalam kehidupan sehari-hari, misalnya dengan menggunakan pensil atau buku yang berada di sekitar anak-anak belajar. Sebagai keterangan tambahan, cara mengajarkan fakta-fakta pembagian dapat menggunakan gambar-gambar benda nyata dalam bentuk soal secara pengurangan berulang-ulang. Contoh 1. Ibu mempunyai 10 permen dibagikan kepada 5 orang anak setiap anak mendapat sama banyak berapa permen yang diterima setiap anak ? Jawab 10 5 artinya 10 dikurangi 5 secara berulang sampai habis / hasilnya 0 10 β 5 β 5 = 0 habis Pengurangan selesai setelah 2 kali, jadi setiap anak mendapat 2 permen. 2. 8 2 = 8 β 2 β 2 β 2 β 2 = 0 Maka, 8 2 = 4 3. 20 4 = 16 β 4 β 4 β 4 β 4 β 4 = 0 Maka, 20 4 = 5 3. Sifat-sifat Operasi Bilangan Asli a. Sifat komutatif Seperti yang telah kamu ketahui, sifat komutatif disebut juga sifat pertukaran. Untuk lebih jelasnya, perhatikan penjumlahan berikut. 2 + 4 = 6 4 + 2 = 6 Jadi, 2 + 4 = 4 + 2. Sifat seperti ini dinamakan sifat komutatif pada penjumlahan. Sekarang, coba perhatikan perkalian berikut. 2 Γ 4 = 8 4 Γ 2 = 8 Jadi, 2 Γ 4 = 4 Γ 2. Sifat seperti ini dinamakan sifat komutatif pada perkalian. Apakah sifat komutatif berlaku pada pengurangan dan pembagian? Perhatikan contoh berikut. 1 2 β 4 = β2 dan 4 β 2 = 2 Jadi, 2 β 4 tidak sama dengan 4 β 2, atau 2 β 4 β 4 β 2. 2 2 4 = 0,5 dan 4 2 = 2 Diperoleh bahwa 2 4 tidak sama dengan 4 2, atau 2 4 β 4 2. Jadi, pada pengurangan dan pembagian tidak berlaku sifat komutatif. b. Sifat Asosiatif Pada penjumlahan dan perkalian tiga bilangan bulat berlaku sifat asosiatif atau disebut juga sifat pengelompokan. Perhatikanlah contoh penjumlahan tiga bilangan berikut. 2 + 3 + 4 = 5 + 4 = 9 2 + 3 + 4 = 2 + 7 = 9 Jadi, 2 + 3 + 4 = 2 + 3 + 4. Sifat seperti ini dinamakan sifat asosiatif pada penjumlahan. Sekarang, coba perhatikan contoh perkalian berikut. 2 Γ 3 Γ 4 = 6 Γ 4 = 24 2 Γ 3 Γ 4 = 2 Γ 12 = 24 Jadi, 2 Γ 3 Γ 4 = 2 Γ 3 Γ 4. Sifat ini disebut sifat asosiatif pada perkalian. c. Sifat Distributif Selain sifat komutatif dan sifat asosiatif, terdapat pula sifat distributif. Sifat distributif disebut juga sifat penyebaran. Untuk lebih memahaminya, perhatikanlah contoh berikut. Contoh 1 Apakah 3 Γ 4 + 5 = 3 Γ 4 + 3 Γ 5 ? Jawab 3 Γ 4 + 5 = 3 Γ 9 = 27, dan 3 Γ 4 + 3 Γ 5 = 12 + 15 = 27. Jadi, 3 Γ 4 + 5 = 3 Γ 4 + 3 Γ 5 Contoh 2 Apakah 3 Γ 4 β 2 = 3 Γ 4 β 3 Γ 2 ? Jawab 3 Γ 4 β 2 = 3 Γ 2 = 6, dan 3Γ 4 β 3 Γ 2 = 12 β 6 = 6. Jadi, 3 Γ 4 β 2 = 3 Γ 4 β 3 Γ 2. B. Bilangan Cacah 1. Pengertian Bilangan Cacah Bilangan cacah merupakan himpunan bilangan asli ditambah dengan bilangan nol. Bilangan asli sendiri merupakan bilangan yang dimulai dari 1, lalu selanjutnya bertambah satu-satu. Contoh bilangan cacah yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 2. Operasi Pada Bilangan Cacah Operasi pada bilangan cacah meliputi penjumlahan, pengurangan, perkalian dan pembagian. a. Operasi Penjumlahan Bilangan Cacah Ada 2 pendekatan atau jalan untuk menerangkan penjumlahan, yaitu melalui kumpulan, dan dengan pengukuran. 1. Penjumlahan melalui kumpulan Penjumlahan dengan menggunakan dasar kumpulan didasarkan kepada gabungan dua kumpulan lepas. Mengingat dunia anak-anak masih nyata maka kumpulan yang diambil harus kumpulan dengan anggota benda nyata atau gambar dengan anggota real. Misalnya Saya punya kelerang dua buah. Kemudian saya membeli lagi tiga buah. Berapa buah kelerang yang sekarang saya miliki ? Kita juga dapat menggunakan benda-benda lain, seperti buku, mobil-mobilan, pensil, dan lain-lain. 2. Penjumlahan melalui pengukuran Pada penjumlahan dengan pengukuran, yang dijumlahkan itu bukan bilangan kardinal dari kumpulan-kumpulan tetapi ukuran panjangnya. Penjumlahan dengan pengukuran dapat diperagakan dengan menggunakan garis bilangan. Contoh 3. Sifat- sifat penjumlahan a Sifat tertutup, yang berarti hasil dari penjumlahan bilangan cacah a dan bilangan cacah b adalah berupa bilangan cacah, misalnya 0 + 1 = 1 1 + 2 = 3 b Sifat komutatif atau juga sering dikenal dengan sifat pertukaran berlaku a + b = b + a, misalnya 1 + 0 = 1 dan 0 + 1 = 1 3 + 1 = 4 dan 1 + 3 = 4 c Sifat Asosiatif atau juga dikenal dengan nama sifat pengelompokan, berlaku a + b + c = a + b + c , misalnya 1 + 2 + 3 = 6 dan 1 + 2 + 3 = 6 3 + 1 + 6 = 10 dan 3 + 1 + 6 = 10 d Unsur Identitas, yang berarti apabila dijumlah suatu bilangan cacah dengan bilangan nol maka hasilnya adalah bilangan itu sendiri, misalnya 0 + a = a + 0 = a 0 + 3 = 3 + 0 = 3 5 + 0 = 5 b. Operasi Pengurangan Bilangan Cacah Pada penjumlahan, kita mencari jumlahnya. 4 + 3 = Suku suku jumlah Sedangkan, pada pengurangan, kita mencari selisihnya. 5 - 3 = Yang dikurangi pengurang selisih Pada 5 β 3 = kita harus mencari bilangan yang bila ditambahkan kepada 3 diperoleh 5. Ada beberapa cara untuk menjelaskan operasi pengurangan kepada anak usia SD. 1. Pengurangan melalui kumpulan Banyak cerita sehari-hari yang pemecahannya memerlukan pemahaman pengurangan. Misalnya Ada 5 ekor anak ayam. Dua ekor lari mengejar kupu-kupu. Berapa ekor anak ayam yang tinggal ? gambar atau model konkretnya dapat sebagai berikut 2. Pengurangan melalui pengukuran Pengurangan dengan pengukuran dapat dilakukan dengan menggunakan garis bilangan. Meragakan penjumlahan pada garis bilangan ialah dengan bergerak maju ke sebelah kanan, sedangkan pengurangan berlawanan arah dengan penjumlahan yaitu bergerak mundur ke sebelah kiri. Contoh 4 β 2 = 2 3. Pengurangan dengan bilangan nol Setiap bilangan jika dikurangi oleh nol, hasilnya adalah bilangan itu sendiri. Misalnya Contoh 1 6 β 0 = 6 2 15 β 0 = 15 3 24 - 0 = 24 c. Operasi Perkalian Bilangan Cacah Operasi perkalian bilangan cacah dapat didefinisikan sebagai hasil penjumlahan berulang bilangan-bilangan cacah. Jika a dan b bilangan-bilangan cacah. Maka a x b dapat didefinisikan sebagai a x b = b + b + b + b +b +... + b sebanyak a kali Oleh karena itu, 4 x 3 mengandung arti 3 + 3 + 3 + 3. Sedangkan 3 x 4 mengandung arti 4 + 4 + 4. Jadi secara konseptual a x b tidak sama dengan b x a, akan tetapi kalau dilihat hasilnya saja maka a x b = b x a. 1. Perkalian sebagai penjumlahan berulang Perhatikan soal berikut ini. βIbu Ani mempunyai 2 dus telur yang masing-masing dus berisi 6 telur. Berapa butir telur yang Ibu Ani miliki ?β banyaknya telur yang dimiliki oleh Ibu Ani adalah 2 x 6 butir. Dari soal itu, jelas bahwa banyaknya telur Ibu Ani 6 + 6. Jadi 2 x 6 = 6 + 6 = 12. Dengan demikian maka soalsoal 5 x 2, 6 x 1, 4 x 2, 2 x 4, dapat diselesaikan dengan penjumlahan berulang sebagai berikut. 5 x 2 = 2 + 2 + 2 + 2 + 2 = 10 6 x 1 = 1 + 1 + 1 + 1 + 1 + 1 = 6 4 x 2 = 2 + 2 + 2 + 2 = 8 2 x 4 = 4 + 4 = 8 Namun, perlu diingat bahwa walaupun hasil akhirnya sama, namun secara proses 5 x 2 tidak sama dengan 2 x 5, 5 x 2 merupakan jumlah dari lima bilangan 2, sedangkan 2 x 5 merupakan jumlah dari dua bilangan 5. Untuk mengingatnya, kita bisa menganalogikannya pada reserp dokter. 3 x 1 artinya tiga kali minum obat, dengan setiap kali meminum obat, obat yang diminun 1 tablet. 2. Sifat-sifat perkalian bilangan cacah a Sifat tertutup Sifat tertutup adalah hasil perkalian bilangan cacah a dan b berupa bilangan cacah. Misalnya 1 0 x 1 = 0 bilangan cacah 2 1 x 2 = 2 bilangan cacah 3 4 x 5 = 20 bilangan cacah b Sifat komutatif pertukaran Pada operasi perkalian sebarang bilangan cacah a dan b berlaku a x b = b x a, contoh 1 1 x 0 = 0 dan 0 x 1 = 0 2 3 x 2 = 6 dan 2 x 3 = 6 3 4 x 5 = 20 dan 5 x 4 = 20 c Sifat asosiatif pengelompokan Pada operasi perkalian sebarang bilangan cacah a, b dan c berlaku a x b x c = a x b x c, misalnya 1 1 x 2 x 3 = 1 x 2 x 3 Ruas kiri 1 x 2 x 3 Ruas Kanan 1 x 2 x 3 = 2 x 3 = 1 x 6 = 6 = 30 2 3 x 1 x 6 = 3 x 1 x 6 Ruas kiri 3 x 1 x 6 Ruas Kanan 3 x 1 x 6 = 3 x 6 = 3 x 6 = 18 = 18 d Sifat distributif penyebaran perkalian terhadap penjumlahan Pada perkalian terhadap penjumlahan bilangan cacah sebarang a, b dan c berlaku a x b + c = a x b + a x c, misalnya 1 2 x 3 + 4 = 2 x 3 + 2 x 4 Ruas kiri 2 x 3 + 4 Ruas Kanan 2 x 3 + 2 x 4 = 2 x 7 = 6 + 8 = 14 = 14 2 4 x 1 + 3 = 4 x 1 + 4 x 3 Ruas kiri 4 x 1 + 3 Ruas Kanan 4 x 1 + 4 x 3 = 4 x 4 = 4 + 12 = 16 = 16 e Perkalian dengan bilangan nol Hasil perkalian bilangan cacah a dengan bilangan nol adalah nol. Misalnya 1 a x 0 = 0 2 5 x 0 = 0 3 0 x 14 = 0 f Unsur Identitas Hasil perkalian bilangan cacah a dengan bilangan 1 adalah bilangan a itu sendiri. Misalnya 1 1 x a = a 2 1 x 34 = 34 3 7 x 1 = 7 d. Operasi Pembagian Bilangan Cacah Konsep pembagian diperkenalkan kepada siswa setelah ia memahami konsep perkalian. Seperti pada penjumlahan, pengurangan, dan perkalian, pembagian diperkenalkan kepada anak dengan menggunakan benda-benda real atau gambar-gambar benda real yang dikaitkan dengan kehidupan sehari-hari. Dengan keadaan yang sehari-hari yang sebenarnya itu diubah ke dalam model konkrit atau gambar yang dilanjutkan dengan simbol. Misalnya βada 6 buah kue yang harus dibagi sama di antara 3 anak. Berapa buah kue untuk setiap anak ?β Maka, setiap anak akan mendapatkan 2 buah kue. Sesuai dengan macamnya soal cerita yang dapat diselesaikan dengan pembagian, kita dapat menggunakan bermacam-macam pendekatan dalam menanamkan pengertian pembagian. Pendekatan-pendekatan itu melalui pengurangan berulangan dan cara bersusun pendek. 1. Pembagian sebagai pengurangan berulang Menyelesaikan soal 10 2 dengan cara pengurangan berulang ialah sebagai berikut. Kurangi 10 itu dengan 2 terus menerus sampai habis atau sisanya lebih kecil dari 2. Kemudian kita lihat berapa kali pengurangan dilakukan. 10 8 6 2 _ ke-3 4 ternyata bahwa sampai sisinya 0 2 _ ke-4 oleh 2 itu terjadi 5 kali. Ini berarti 2 pengurangan 10 berarti 10 2 = 5 0 C. Bilangan Bulat 1. Pengertian Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 87, 65, -34, 0. Bilangan bulat terdiri dari bilangan bulat positif dan bilangan bulat negatif. Bilangan bulat di dalamnya juga terdapat bilangan asli dan cacah. Himpunan bilangan bulat diberi simbol B dan dinyatakan sebagai berikut B = {β¦, -3, -2, -1, 0, 1, 2, 3, 4, β¦}. Dalam bentuk garis bilangan 2. Operasi Hitung Bilangan Bulat a. Operasi Penjumlahan Bilangan Bulat + 1. Penjumlahan bilangan bulat positif dengan bilangan bulat positif Penjumlahan bilangan bulat positif dengan bilangan bulat positif selalu menghasilkan bilangan positif. Contohnya 2 + 5 = 7 2. Penjumlahan bilangan bulat positif dengan bilangan bulat negatif Penjumlahan bilangan bulat positif dengan bilangan bulat negatif akan menghasilkan a Bilangan bulat negatif, jika bilangan bulat negatif lebih besar daripada bilangan bulat positif. Contoh 3 + -5 = -2 b Bilangan nol, jika bilangan bulat positif sama dengan bilangan bulat negatif. c Bilangan bulat positif, jika bilangan bulat positif lebih besar daripada bilangan negatif. Contoh 4 + -3 = 1 3. Penjumlahan bilangan bulat negatif dengan bilangan positif Penjumlahan bilangan bulat negatif dengan bilangan bulat positif akan menghasilkan a Bilangan bulat negatif, jika bilangan bulat negatif lebih besar daripada bilangan bulat positif. Contoh -6 + 3 = -3 b Bilangan nol, jika bilangan bulat negatif sama dengan bilangan bulat positif. Contoh -3 +3 = 0 c Bilangan bulat positif, jika bilangan bulat positif lebih besar daripada bilangan negatif. Contoh -4 + 6 = 2 4. Penjumlahan bilangan bulat negatif dengan bilangan bulat negatif Penjumlahan bilangan bulat negatif dengan bilangan bulat negatif selalu menghasilkan bilangan bulat negatif. Contoh -2 + -3 = -5 b. Operasi Pengurangan Bilangan Bulat - 1. Pengurangan bilangan bulat positif dengan positif Pengurangan bilangan bulat positif dengan bilangan bulat positif akan menghasilkan a Bilangan bulat positif, jika bilangan yang dikurangi lebih besar daripada yang mengurangi. Contoh 4 β 3 = 1 b Bilangan nol, jika bilangan yang dikurangi sama dengan bilangan yang mengurangi. Contoh 3 β 3 = 0 c Bilangan bulat negatif, jika bilangan yang mengurangi lebih besar daripada bilangan yang dikurangi. Contoh 2 β 5 = -3 2. Pengurangan bilangan bulat negatif dengan negatif Pengurangan bilangan bulat negatif dengan bilangan bulat negatif akan menghasilkan a Bilangan bulat positif, jika bilangan yang mengurangi lebih besar daripada bilangan yang dikurangi. Contoh -3 β -6 = 3 b Bilangan nol, jika bilangan yang dikurangi sama dengan bilangan yang mengurangi. Contoh -3 β -3 = 0 c Bilangan bulat negatif, jika bilangan yang dikurangi lebih besar daripada bilangan yang mengurangi. Contoh -5 β -2 = -3 3. Pengurangan bilangan bulat negatif dengan bilangan bulat positif Pengurangan bilangan bulat negatif dengan bilangan bulat positif akan menghasilkan bilangan bulat negatif. Contoh -2 - 3 = -5 4. Pengurangan bilangan bulat positif dengan bilangan bulat negatif Pengurangan bilangan bulat positif dengan bilangan bulat negatif akan menghasilkan bilangan bulat negatif. Contoh 2 β -3 = 5 c. Operasi Perkalian Bilangan Bulat x Perlu diingat bahwa dalam operasi perkalian walaupun hasil akhirnya sama, namun secara proses 5 x 2 tidak sama dengan 2 x 5, 5 x 2 merupakan jumlah dari lima bilangan 2, sedangkan 2 x 5 merupakan jumlah dari dua bilangan 5. Untuk mengingatnya, kita bisa menganalogikannya dengan resep dokter. 3 x 1 artinya tiga kali minum obat, dengan setiap kali meminum obat, obat yang diminun 1 tablet yang diminum pagi, siang dan malam. 1. Perkalian bilangan bulat positif dengan bilangan bulat positif Perkalian bilangan bulat positif dengan bilangan bulat positif akan menghasilkan bilangan bulat positif. a x b = ab atau b x a = ba dan berlaku sifat komutatif. Contoh 1 7 x 6 = 6 + 6 + 6 + 6 + 6 + 6 + 6 = 42 2 6 x 7 = 7 + 7 + 7 + 7 + 7 + 7 + 7 = 42 3 3 x 3 = 3 + 3 + 3 = 9 2. Perkalian bilangan bulat positif dengan bilangan bulat negatif Perkalian bilangan bulat positif dengan bilangan bulat negatif akan menghasilkan bilangan bulat negatif. a x -b = -ab Contoh 1 4 x -3 = -3 + -3 + -3 + -3 = -12 2 5 x -4 = -4 + 4 + -4 + -4 + -4 = -20 3. Perkalian bilangan bulat negatif dengan bilangan bulat positif Jika 3 x -4 = -3 + -3 + -3 + -3 = -12, bagaimana dengan -4 x 3 ? bisakah kita menggunakan penjumlahan berulang angka 3 sebanyak β4 kali ? tentunya tidak bisa. Contoh -5 x 3 = ... Maka untuk menghitung perkalian bilangan bulat negatif dengan bilangan bulat positif, dengan memperhatikan pola penalaran berikut 3 x 1 = 3 2 x 1 = 2 1 x 1 = 1 0 x 1 = 0 -1 x 1 = -1 -2 x 1 = -2 -3 x 1 = -3 -4 x 1 = -4-5 x 1 = -5, dan seterusnya Apabila diteruskan nilainya akan selalu negatif, dan selisih antara hasil pertama dan hasil kedua selisih -1 dan begitu seterusnya. Dari pola tersebut terlihat bahwa perkalian bilangan bulat positif dan bilangan bulat negatif adalah bilangan negatif. Jadi, -5 x 3 = -15. Contoh lain 1. -25 x 2 = -502. 2 x -25 = -50 3. -3 x 4 = -12 4. Perkalian bilangan bulat negatif dengan bilangan bulat negatif Contoh soal. -4 x -3 = ? Perkalian bilangan bulat negatif dengan bilangan bulat negatif akan selalu menghasilkan bilangan bulat positif -a x -b = ab. Perhatikan pola penalaran berikut ini -4 x 3 = -12 -4 x 2 = -8 -4 x 1 = -4 -4 x 0 = 0 -4 x -1 = 4 -4 x -2 = 8 -4 x -3 = 12, dan seterusnya. Apabila diteruskan nilainya akan selalu positif, dan hasil perkalian pertama dengan perkalian kedua selisih 4 dan bertambah 4 seterusnya. Kemudian pengali pertama dengan kedua dikurangi 1 -1 hingga seterusnya. Dari pola tersebut terlihat bahwa perkalian bilangan bulat negatif dan bilangan bulat negatif adalah bilangan positif. Dari pola penalaran tersebut juga dapat disimpulkan, bahwa perkalian dengan bilangan 0 akan menghasilkan 0. Jadi, -4 x -3 = 12. Contoh lain 1 -4 x -5 = 202 -5 x -4 = 20 3 -7 x -3 = 21 4 -5 x -2 = 10 d. Operasi Pembagian Bilangan Bulat Operasi pembagian bilangan bulat dapat dilakukan dengan cara pengurangan berurutan hingga menghasilkan 0. 1. Pembagian bilangan bulat positif dengan bilangan bulat positif Pembagian bilangan bulat positif dengan bilangan bulat positif akan selalu menghasilkan bilangan bulat positif. Contoh 1 8 2 = ... Cara ke-1 8 2 artinya ada berapa βduaanβ dalam 8. Dalam kotak tersebut terdapat lingkaran hitam sebanyak 8, kemudian di ikat sama banyak. Masing-masing ikatan berisi dua lingkaran hitam. Maka ada 4 ikatan yang isinya sama banyak. Jadi, 8 2 = 4 Cara ke-2 Untuk pengerjakan operasi pembagian juga dapat dilakukan dengan menggunakan operasi perkalian. Perhatikan contoh soal berikut ini. = 4, sama artinya dengan 2 x 4 = 8 82 = 2, sama artinya dengan 4 x 2 = 8 84 82 20 5 Jadi, a b 2 9 3 = ... 9 β 3 = 6 , pengurangan ke-1 6 β 3 = 3 , pengurangan ke-2 3 β 3 = 0 , pengurangan ke-3 Dalam pembagian 9 3 terjadi 3 kali mengurangi 9 dengan 3 sehingga hasilnya 0, maka 9 3 = 3 2. Pembagian bilangan bulat negatif dengan bilangan bulat positif, bilangan bulat positif dengan bilangan bulat negatif, dan bilangan bulat negatif dengan negatif. Contoh a Pembagian bilangan bulat negatif dengan bilangan bulat positif -8 2 = ... = -4, artinya 2 x -4 = -8 -8 2 -8 Contoh lain = q , maka angka berapa yang di kalikan 5 akan menghasilkan -15. 5 x q = -15, maka q adalah -3. 5 x -3 = -15. Jadi, -15 5 = -3 -15 5 b Pembagian bilangan bulat positif dengan bilangan bulat negatif = n , maka angka berapa yang di kalikan -3 akan menghasilkan 18. -3 x n = 18, maka n adalah -6. -3 x -6 = 18. Jadi, 18 -3 = -6 18 -3 c Pembagian bilangan bulat negatif dengan bilangan bulat negatif = p , maka angka berapa yang di kalikan -6 akan menghasilkan -12. -6 x p = -12, maka p adalah 2 -6 x 2 = -12 Jadi, -12 -6 = 2 -12 -6 3. Sifat Operasi Bilangan Bulat a. Sifat komutatif Sifat komutatif pertukaran pada penjumlahan dan perkalian untuk setiap bilangan bulat a dan b, berlaku sebagi berikut a + b = b + a dan a x b = b x a, berlaku untuk semua bilangan bulat. Contoh 1 3 + -9 = -6 dan -9 + 3 = -6 2 3 + 5 = 8 dan 5 + 3 = 8 3 4 x 2 = 8 dan 2 x 4 = 8 4 3 x 2 = 6 dan 2 x 3 = 6 5 4 x -2 = -8 dan -2 x 4 = -8 b. Sifat asosiatif Sifat asosiatif pengelompokan pada penjumlahan dan perkalian untuk setiap a, b, dan c bilangan-bilangan bulat berlaku a + b + c = a + b + c a x b x c = a x b x c, berlaku untuk semua bilangan bulat Contoh 1 9 + -5 + -2 = 9 + -5 + -2 Ruas kiri 9 + -5 + -2 Ruas Kanan 9 + -5 + -2 = 4 + -2 = 9 + -7 = 2 = 2 2 2 + 4 + 6 = 2 + 4 + 6 Ruas kiri 2 + 4 + 6 Ruas Kanan 2 + 4 + 6 = 6 + 6 = 2 + 10 = 12 = 12 3 3 x 2 x 4 = 3 x 2 x 4 Ruas kiri 3 x 2 x 4 Ruas Kanan 3 x 2 x 4 = 6 x 4 = 3 + 8 = 24 = 24 4 3 x 5 x -2 = 3 x 5 x -2 Ruas kiri 3 x 5 x -2 Ruas Kanan 3 x 5 x -2 = 15 x -2 = 3 x -10 = -30 = -30 c. Sifat distributif penyebaran Sifat distributif penyebaran berlaku a x b + c = a x b + a x c, yang berlaku untuk semua bilangan bulat. Contoh 1 4 x 5 + 2 = 4 x 5 + 4 x 2 Ruas kiri 4 x 5 +2 Ruas Kanan 4 x 5 + 4 x 2 = 4 x 7 = 20 + 8 = 28 = 28 2 3 x -2 + 4 = 3 x -2 + 3 x 4 Ruas kiri 3 x -2 + 4 Ruas Kanan 3 x -2 + 3 x 4 = 3 x 2 = -6 + 12 = 6 = 6 BAB III PENUTUP Kesimpulan Bilangan asli A counting number atau natural number merupakan bilangan yang dimulai dari angka 1 dan bertambah 1. Pada garis deret ukur bilangan matematika yang dimulai dari angka 1 bertambah 1 ke arah kanan. Contoh bilangan asli adalah 1, 2, 3, 4, 5, 6, 7, 8, 9, ... Operasi bilangan asli meliputi penjumlahan, pengurangan, perkalian, dan pembagian. Sifat-sifat bilangan asli meliputi sifar komutatif pertukaran, sifat asosiatif pengelompokan, dan sifat distributif penyebaran. Bilangan cacah merupakan himpunan bilangan asli ditambah dengan bilangan nol. Bilangan asli sendiri merupakan bilangan yang dimulai dari 0, lalu selanjutnya bertambah satu-satu. Contoh bilangan cacah yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... Operasi bilangan cacah meliputi penjumlan, pengurangan, perkalian, dan pembagian. Operasi penjumlahan ada 2 pendekatan atau jalan untuk menerangkan penjumlahan, yaitu melalui kumpulan, dan dengan pengukuran. Sifat penjumlahan bilangan cacah meliputi tertutup, komutatif, asosiatif, dan usur identitas. Operasi pengurangan ada beberapa cara untuk menjelaskan operasi pengurangan kepada anak usia SD, yaitu meliputi pengurangan melalui kumpulan, pengurangan melalui pengukuran, dan pengurangan dengan bilangan nol. Operasi perkalian bilangan cacah dapat didefinisikan sebagai hasil penjumlahan berulang bilangan-bilangan cacah. Jika a dan b bilangan-bilangan cacah. Maka a x b dapat didefinisikan sebagai a x b = b + b + b + b +b +... + b sebanyak a kali. Sifat perkalian bilangan cacah meliputi sifat tertutup, komutatif, asosiatif, distributif, perkalian dengan bilangan nol, dan unsur identitas. Operasi pembagian bilangan cacah dapat dilakukan dengan cara pengurangan berulang-ulang. Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 87, 65, -34, 0. Bialangan bulat terdiri dari bilangan bulat positif dan bilangan bulat negatif. Bilangan bulat didalamnya juga terdapat bilangan asli dan cacah. Himpunan bilangan bulat diberi simbol B dan dinyatakan sebagai berikut B = {β¦, -3, -2, -1, 0, 1, 2, 3, 4, β¦}. Operasi bilangan bulat meliputi operasi penjumlahan, pengurangan, pengurangan, pembagian. Operasi penjumlahan bilangan bulat meliputi penjumlahan bilangan bulat positif dengan bilangan bulat positif, penjumlahan bilangan bulat positif dengan bilangan bulat negatif, penjumlahan bilangan bulat negatif dengan bilangan positif, dan penjumlahan bilangan bulat negatif dengan bilangan bulat negatif. Operasi pengurangan bilangan bulat meliputi pengurangan bilangan bulat positif dengan positif , pengurangan bilangan bulat negatif dengan negatif, pengurangan bilangan bulat negatif dengan bilangan bulat positif, pengurangan bilangan bulat positif dengan bilangan bulat negatif. Operasi perkalian bilangan bulat meliputi perkalian bilangan bulat positif dengan bilangan bulat positif, perkalian bilangan bulat positif dengan bilangan bulat negatif, perkalian bilangan bulat negatif dengan bilangan bulat positif, perkalian bilangan bulat negatif dengan bilangan bulat negatif. Operasi pembagian bilangan bulat meliputi pembagian bilangan bulat positif dengan bilangan bulat positif, pembagian bilangan bulat negatif dengan bilangan bulat positif, pembagian bilangan bulat negatif dengan bilangan bulat negatif, pembagian bilangan bulat positif dengan bilangan bulat negatif. Pada bilangan bulat terdapat sifat-sifat tentang penjumlahan dan perkalian yaitu komutatif, asosiatif, dan distributif. DAFTAR PUSTAKA Untoro, J. 2006. Buku Pintar Matematika SD untuk Kelas 4, 5, dan 6. Jakarta Wahyumedia Untoro, Joko. 2007. Genius Matematika Kelas 4 SD. Jakarta Wahyumedia Karso, dkk. 2013. Pendidikan Matematika 1. Banten Universitas Terbuka. Joeniarsih, Asih. 2012. Makalah Matematika Bilbul. Online, diakses pada tanggal 16 Februari, 2016, Simanjuntak, Lismawati, dkk. 2003. Metode Mengajar Matematika I. Jakarta Rineka Cipta gc6bQl.